silk

A filament match for house—silk is confirmed to thrive in outer house temperatures

Photo credit: CC0 Public Domain

Their initial discovery appeared to be a contradiction in terms, as most other polymer fibers became brittle in the cold. However, after many years of working on the problem, the research group found that the cryogenic toughness of silk is due to its nanoscale fibrils. The submicroscopic order and hierarchy enables a silk to withstand temperatures down to -200 ° C. And possibly even lower, which would make these classic natural luxury fibers ideal for applications in the depths of cool space.

The interdisciplinary team examined the behavior and function of several animal silks that had cooled to a temperature of -196 ° C. The fibers included spider silk, but the study focused on the thicker and much more commercial fibers of the wild silkworm, Antheraea pernyi.

In an article published today in Materials Chemistry Frontiers, the team was not only able to show that silk increases its toughness in conditions where most materials would become very brittle. In fact, silk seems to contradict the basic understanding of polymer science in that it does not lose in really cold conditions, but rather improves in quality by becoming both stronger and more ductile. This study examines the how and explains the why. It turns out that the underlying processes are based on the many nanoscale fibrils that make up the core of a silk fiber.

Consistent with traditional polymer theory, the study assumes that the individual fibrils actually get stiffer as they get colder. The novelty and importance of the study lies in the conclusion that this stiffening leads to increased friction between the fribrillae. This friction in turn increases the rupture energy deflection and at the same time resists the slipping of the fibrils. A change in temperature would also modulate the force of attraction between individual silk protein molecules, which in turn affects the core properties of each fibril, which is made up of many thousands of molecules.

It is important that research is able to describe the hardening process on both a micrometer and nano scale. The team concludes that any crack that tears through the material will be redirected every time it hits a nanofibril, forcing it to lose more and more energy in the many detours it has to negotiate . And so a silk fiber only breaks when the hundreds or thousands of nanofibrils have first stretched and then slipped and then all torn individually.

The discovery pushes boundaries by examining a material in the conceptually difficult and technologically challenging realm that not only spans the micrometer and nanoscale, but also needs to be examined at temperatures well below any freezer. The size of the scales examined ranges from the micrometer size of the fiber to the submicrometer size of a filament bundle up to the nanoscale of the fibrils and not least to supra-molecular structures and single molecules. Against the backdrop of cutting edge scientific and futuristic applications, it should be remembered that silk is not only 100% organic fiber, but also an agricultural product with thousands of years of research and development.

It appears that this study has far-reaching implications by suggesting a wide variety of novel uses for silk, ranging from novel materials for use in the polar regions of the world to novel composites for light aircraft and kites used in the Strato and Mesogalls may even fly giant webs spun by robotic spiders to catch astro trash in space.

Professor Fritz Vollrath of the University of Oxford Zoological Institute said, “We anticipate that this study will lead to the development and manufacture of new families of tough structural filaments and composites, using both natural and silk-inspired filaments for use in extremely cold conditions can be used as a room. ‘

Prof. Zhengzhong Shao of the Macromolecular Science Department at Fudan University in Shanghai said, “We conclude that the exceptional mechanical toughness of silk fibers at cryogenic temperatures is due to their highly oriented and oriented, relatively independent and stretchable nanofibrillary morphology.”

Dr. Juan Guan of Beihang University in Beijing said, ‘This study provides new insights into our understanding of the structure-property relationships of high-performance natural materials that we hope will lead to the manufacture of man-made polymers and composites for low temperature and high impact applications. ‘

And Dr. Chris Holland of Sheffield University, leader of a pan-European research consortium on novel, sustainable biofibers based on knowledge about the spinning of natural silk, said: “Natural silks continue to be the gold standard materials for fiber production. The work here shows that not only the chemistry, but also the way in which silks are spun and consequently structured, is the secret of their success. ‘

The next steps of research will continue to test the amazing properties. A spin-out company, Spintex Ltd from Oxford University, funded in part by an EU H2020 grant, is researching spider silk proteins in the spider’s nature, focusing on copying the submicron structures of bundled fibrils.

Silk

  • Natural silks are environmentally friendly because the animal flings them from aqueous protein melts at ambient temperatures and low pressure.
  • Many silks are biocompatible, making them excellent materials for use in medical devices. Silks are light and tend to be very tough, suggesting their use in light applications where a lot of energy must be absorbed by the material.
  • All silks are biologically disposable and consist entirely of natural amino acid building blocks that can easily be integrated into the natural cycle of decay and rebuilding.
  • Last but not least, there is a wealth of information in silk about protein folding and the way nature makes extraordinary polymer structures.

Nanomaterials help spiders spin the toughest material available from Oxford University

Quote: A filament suitable for space – silk has been proven to thrive at space temperatures (2019, October 3), which were published on December 21, 2020 at https://phys.org/news/2019-10-filament-spacesilk-proven-outer- space .html

This document is subject to copyright. Except for fair trade for the purpose of private study or research, no part may be reproduced without written permission. The content is provided for informational purposes only.

Source Link

3ders.org – 3DFuel releases Hydro-Help, new water-soluble 3D printing filament for helps

May 24, 2017 | From David

One of the more difficult parts of the 3D printing process is the use of beams. Complex shapes cannot always be 3D printed individually and therefore require the addition of support structures that can be removed after the object is printed. Removal of beams can be difficult, time consuming, and dangerous due to the chiselling or chemical bathing required. The newest product from 3DFuel, a filament that is completely water soluble and therefore incredibly easy to remove, could make support issues a thing of the past.

The material known as Hydro-Support is now available on the website of 3DFuel, a brand that was developed in 2016 in cooperation between the filament manufacturers 3Dom USA, 3Dom Europe and 3D-Fuel. All 3DFuel products are manufactured in its own plants, one in Fargo, North Dakota and the other in Moville, Ireland. The quality is ensured through extensive tests carried out with a variety of different 3D printers. MakerBot, LulzBot, FlashForge and many more are used to create the best possible materials for customers no matter what machine they are using.

Although there are already several 3D printer filaments on the market that can be completely dissolved in water (and thus perform a similar function to hydro-support), 3DFuel claims that its product is the easiest to use yet. For example, PVA is widely used to build support structures, but its high water retention can make print jobs difficult. It also tends to be an expensive material to source.

A finished 3D print made with Hydro-Support has a high tensile strength and its material properties are close to PLA, one of the most commonly used FDM filaments. It can then be used to support large overhangs or voids in objects during the printing process, as well as 3D prints with sophisticated internal geometry or core shapes for objects made by various methods. Just toss the project in some water and hydro-support can be carefully hand-worked off after a few hours or even faster if a heated water tank is used. Alternatively, the material will completely dissolve on its own in less than 24 hours.

Hydro-Support comes in a vacuum-sealed container to keep moisture out. 3DFuel recommends that unused filaments continue to be stored in a sealed container with desiccant to avoid possible damage from moisture or moisture. Each roll holds 500g of material and customers can choose from a variety of diameters to suit their specific needs. The filament is available with a diameter of 1.75 mm or 2.85 mm and is carefully measured with a multi-axis laser measurement system. This prevents problems that can affect FDM or FFF 3D printers when using different filament diameters.

A high quality soluble filament is something that the 3D printing world would greatly benefit from, especially when you consider the environmental impact of the technology. In order to achieve perfect results for complex 3D printed shapes, the carrier must be effectively removed. This is ideal without having to flush any toxic chemicals down the drain. At $ 64.99 per roll, Hydro-Support isn’t much more competitively priced than other soluble filaments on the market. However, if the printability improves over PVA, the product from 3DFuel is definitely a step in the right direction.

Posted in 3D Printing Materials

You may also like:


Source Link

Verbatim introduces new PRIMALLOY BLACK high-performance 3D printing filament

Verbatim introduces new PRIMALLOY BLACK high-performance 3D printing filament

Literally announced the introduction of a new high speed, high performance filament for material extrusion called PRIMALLOY BLACKat which it is presented TCT show Later that month.

The filament is a new variant of the PRIMALLOY Product that revealed it almost three years ago. It will serve designers looking to create 3D working objects where flexibility and durability are paramount. Verbatim envisions that these applications can be used in the automotive, household and industrial sectors, including items from door locks and plugs to robotic parts and protective components.

PRIMALLOY is a thermoplastic ester elastomer (TPEE) that offers improved flexibility and rubber elasticity compared to standard TPE materials. It offers high performance properties in terms of mechanical strength and resistance to oil, base, solvents, chemicals, flex fatigue and heat as well as excellent properties at low temperatures and high hardness resistance over a wide temperature range, which makes PRIMALLOY particularly suitable for outdoor applications.

The latest Verbatim material was developed by the parent company. Mitsubishi Chemical. The company also offers PP, PET, BVOH (water-soluble carrier materials), PLA and ABS. All Verbatim filaments are made in Japan from high quality materials and manufactured with extremely tight tolerances to ensure even feed and stable pressure.

“Customers have been pushing us to bring a black version of our popular PRIMALLOY material to market and here it is,” said Shigeyuki Furomoto, manager, Global CEO Office of Mitsubishi Chemical Media. “We expect good demand as most applications that require a flexible material, such as door or window seals, handles, brackets, etc., tend to be black.”

PRIMALLOY Black will be among Verbatim’s products on display at the upcoming TCT Show in Birmingham, UK Booth E46 between Tuesday September 26th – Thursday September 28th.

Source Link

FIBERLAB releases flexible and temperature fluctuation resistant Fiberflex 40D 3D printing filament

FIBERLAB releases versatile and temperature fluctuation resistant Fiberflex 40D 3D printing filament

Polish filament manufacturer, FIBERLABhas released a new flexible material that is resistant to temperature fluctuations, Fiberflex 40D.

FIBERLAB is one of the leading material developers in Poland – in 2016 it was named Polish Filament Manufacturer of the Year.

These are the mechanical properties of the Fiberflex 40D filament which is the newest product under the Fiberlogy FIBERLAB suggests that this could be a viable option for players in the aerospace industry. Students at the AGH University of Science and Technology used Fiberflex 40D to build the tires of a Mars rover vehicle for the 2018 University Rover Challenge and European Rover Challenge. Thanks to the material properties, the students were able to produce a tire with better ground traction and resistance to temperature fluctuations (from -40 ° C to 70 ° C).

In addition, the company expects the material to be useful for functional prototyping of products, product design and robotics.

According to FIBERLAB, the filament enables a fast filament despite its remarkable flexibility. A direct drive extruder can print at a speed of 45 mm / s. However, objects with a complex geometry can be printed at a speed of 60 mm / s or 75 mm / s. If using a Bowden extruder, the company recommends printing at a slower speed of 30mm / s.

With a Shore hardness of 40D, the material is also more durable than many others on the market, according to FIBERLAB. In addition, the diameter tolerance of +/- 0.02 mm makes feeding easier.

The material is available in sizes 1.75 mm and 2.85 mm from various resellers across Europe and at different prices.

In addition to Fiberflex 40D, FIBERLAB HD offers PLA, EASY PLA, PLA MINERAL, ABS, FIBERWOOD and HIPS filaments.

Source Link

Graph

Graphene-enhanced 3D printing filament aimed toward bettering manufacturing charges

The designer and manufacturer of graphene nanoplate and advanced materials containing graphene nanoplate from XG Sciences Inc. (Lansing, Michigan, USA) and the 3D printing filament manufacturer Terrafilum have a joint development agreement to develop, manufacture, and commercialize of 3D printing filaments and coatings using graphene-based materials.

Graphene was first isolated and characterized in 2004 and is a single layer of carbon atoms configured in a honeycomb lattice on an atomic scale. Among many known properties, monolayer graphene is harder than diamond, lighter than steel, but significantly stronger, and conducts electricity better than copper. Graphene nanosheets – particles made up of multiple layers of graphene – are reported to have unique abilities in terms of energy storage, thermal conductivity, electrical conductivity, barrier properties, lubricity and the ability to improve physical properties when incorporated into plastics, metals or other matrices will.

Chris Jackson, President of Terrafilum, said, “The full potential for 3D printing is gradually being unlocked. By adding XG’s graphene formulations to our environmentally friendly filaments, products are transformed so that a greater variety of parts can be made at faster production rates and less energy. “

3D printing for prototyping and limited production parts continues to grow. However, companies have been urged to move into mass production due to material constraints such as directional structural weaknesses, poor conductivity, and a limited selection of ESD-robust filaments, a general lack of part performance, and slow production times.

Graphene reinforced filaments help solve product-related problems associated with Fused Deposition Modeling (FDM) printing in the past by improving Z-direction strength, providing more robust ESD parts, and overall lighter parts in less time produce.

“The combination of established 3D printing technologies with our graphene-enriched formulations makes the material difference in solving the two most limiting factors for 3D printed parts, product strength and processing speed,” says Dr. Leroy Magwood, Chief Technologist at XG Sciences.

RELATED CONTENT

  • Microspheres: fillers full of possibilities

    For composite applications, these hollow microstructures displace high volume with low weight and offer a wealth of processing and product improvements.

  • Boeing 787 update

    The 787 is nearing rollout and maiden flight, and is relying on innovations in composite materials and processes to achieve its goals

  • Composites 101: fibers and resins

    Compared to traditional materials like steel, aluminum, iron and titanium, composites are still growing up and are only now being better understood by designers and manufacturing engineers. However, the physical properties of composites – combined with an unbeatable light weight – make them undeniably attractive.

Source Link

3D filament winding for future mobility seat concept

3D filament winding permits automobile seating idea

Sustainability and environmental responsibility are becoming increasingly prevalent drivers of technology trends in the automotive industry. Low-energy and low-emission vehicles have become a priority for the international automotive sector, and trends toward alternative transportation technologies such as electromobility and urban air mobility (UAM) are gaining momentum. OEMs are looking to emerging materials and processes as an enabler for these prospective modes of travel, but change in the automotive sector is often slow going. For new materials and processes to be fully adopted, they must not only be qualified, they must be cost-effective and they must enable high-volume production.                     

filament winding, carbon fiber, automotive composites

Ultra lightweight seat. The Ultra Leichtbausitz (ULBS) seating concept was developed through a collaboration between multiple companies using a combination of technologies.  Source | csi entwicklungstechnik

Recently, an innovative project with potential for the automotive sector — as well as emerging markets such as hypercars and air-taxis — demonstrated how new materials, processes and technologies, and close collaboration between companies, might enable next-generation modes of transportation. The goal of the project was to completely rethink a car seat using cutting-edge generative technologies, and to do this using only as much of the right material as needed in the right place — and to yield results quickly. The resulting ultra-lightweight, metal-composite hybrid vehicle seat prototype was developed, from design to manufacture, in just seven months, through a simulation-driven design approach, agile project management methods and close cooperation and system integration between the companies involved. 

Building a better seat

The Ultraleichtbausitz (ULBS) ultra-lightweight seat feasibility study was developed through a collaboration between multiple companies using a combination of technologies. The project’s vision was, in the group’s words, “to create an ultra-lightweightseating concept, outstanding in the market in terms of its weight optimization.” Initiating companies csi entwicklungstechnik GmbH (csi, Neckarsulm, Germany), Alba Tooling & Engineering (Forstau, Austria) and Automotive Management Consulting (AMC, Penzberg, Germany) developed the prototype seating concept in collaboration with Covestro (Leverkusen, Germany), LBK Fertigung (Friedberg, Germany), Robert Hofmann (Lichtenfels, Germany) and 3D|CORE (Herford, Germany).

The collaborative project resulted in a seat prototype with a weight of a little over 10 kilograms, which includes the cushion, structural frame, functional inserts and the seating console that allows it to be mounted to a vehicle. The seat is 20% lighter than comparable lightweight seats on the market, many of those being aftermarket seats. According to ULBS project leader Stefan Herrmann, who is responsible for lightweight design at CSI, there are currently no competing seats on the market that weigh less than 12 kilograms.

“However, a direct comparison is often not apples-to-apples, because aftermarket seats often do not include the seating console in the weight definition, “ says Herrmann, “Also the seating comfort of the ULBS is a lot higher compared to seats with similar weight. Existing seats are often bucket seats, which are even lower weight but not that comfortable, or traditional supersports seats, which have a lot higher weight.”

The ULBS features several innovative technologies, of which the fiber roving skeleton structure based on process technology xFK in 3D plays the most prominent role. (See “Filament winding, reinvented” for more on xFK in 3D and other filament winding technologies.) The fundamental importance of the award-winning technology for endless fiber roving deposition lies in its freedom of design, in the simulation-driven and material-optimized fiber placement exactly in load-direction as well as in the simple, cost-efficient and waste-free application of fiber material. For the load transfer in this framework structure 3D-printed parts have been used. In areas with the highest loads, such as the backrest fitments, the seat uses 3D-printed structures made of stainless steel with high strength and high modulus. In lesser loaded areas, aluminum 3D-printing is used.

csi entwicklungstechnik, an engineering company specializing in vehicle body-in-white (BIW) structures, as well as automotive interiors and exteriors with business areas including carbon fiber-reinforced polymers (CFRP) and additive manufacturing, oversaw and coordinated the project based on the idea initiated by AMC. csi provided the styling, surfacing, concept, simulation, design engineering and project management for the project.

Herrmann explains: “csi was responsible for the work packages in the domain of the digital process chain — styling, engineering design, surfacing design, CAE simulation, topology simulation, validation simulation and virtual confirmation of the project.”

He stresses that what makes the ULBS project noteworthy is not only the use of innovative materials and manufacturing methods, but the development of a complex part that comprises new component designs within a short seven-month timeframe using close collaboration among partners.

filament winding, CFRP, carbon fiber

Filament wound seat frame. Much of the weight reduction in the ULBS project results from AMC’s fiber winding process technology xFK in 3D.  Source | csi entwicklungstechnik

Winding a frame

Much of the weight reduction in the ULBS project results from AMC’s xFK in 3D, a highly flexible, configurable, cost-effective and sustainable fiber composite technology for winding components..

xFK in 3D has already been used for a variety of products and applications for various industries and market segments. SGL Group Wiesbaden, Germany) displayed several automotive and bicycle parts manufactured via this technology at the international composites show JEC World 2018. One of the displayed parts, a carbon fiber bicycle chain ring developed by AMC, is said to cut weight up to 70% compared to an aluminum version.

filament winding, CFRP, carbon fiber

Winding bushings. A thermoset resin-impregnated fiber roving is wound around a positioning fixture, allowing fibers to be arranged to match each part’s loads and desired functions.  Source | csi entwicklungstechnik

The xFK in 3D process winds load-bearing structures in a waste-free manner using thermoset resin-impregnated continuous fibers. A fiber roving saturated with epoxy resin is wound around a positioning fixture, or winding bushings, allowing fibers to be arranged specifically to match each part’s loads and desired functions.

“One major benefit of xFK in 3D is the elimination of weak points regarding load transfer and load introduction in structures,” says Herrmann. He explains that weak points are often not in the continuum of the structure, but in the areas where loads are introduced into the structure, especially where neighboring components are connected to the structure. The xFK in 3D technology enables load transfers across connections and allows fibers to be aligned according to the desired component functions and load cases, and manufactured in three dimensions.

The filament winding process yields additional benefits as well. The process helps to minimize material waste — less than 1% of the fiber roving is wasted.

csi recognized xFK in 3D’s strengths and designed the ULBS seat frame to be constructed under the consultancy of Dr. Clause Georg Bayreuther, technology head of AMC. 

“Working with csi engineers, AMC consultants and Alba’s tooling experts developed this concept and structure for the seat frame to be manufactured using the xFK in 3D process,” says Peter Fassbaender, technology consultant and initiator of xFK in 3D technology.

Alba manufactured the tooling for the CFRP seat frame and provided engineering support. Also, although the seat frame was wound from carbon fiber, natural fibers or basalt fibers are also good candidates.

advanced materials

New technologies. The ULBS prototype uses a combination of new technologies including a back panel shell made of intralaminar reinforcing core (IRC) material, and 3D-printed seat backrest cushions made from thermoplastic polyurethane (TPU). Source | csi entwicklungstechnik

 

A hybrid material structure

In addition to the frame, the ULBS prototype includes several other new innovations. Alba, which supplied the tooling, also supplied the tooling, engineering and manufacturing for the foam body of the seat and executed the seat’s assembly. A fiber fleece mat covers the seat’s CFRP frame which is then covered by a 3D-printed PUR foam cover. The seat cushion area is made from traditional foam.

Further weight reduction was accomplished through the use of 3D|CORE, an intralaminar reinforcing core (IRC) material, inthe back panel shell structure of the seat backrest. The material is an intra-laminar reinforcing core (IRC) material — a structural sandwich core that comprises extruded polystyrene (XPS) and polyethylene terephthalate (PET) foam core bodies in an integrated honeycomb pattern. During the production of composite parts, the honeycomb structure is filled with resin, resulting in high intra-laminar strength. The 3D|Core is assembled between two layers of glass fiber to create a preform, which is infused with thermoplastic epoxy resin using vacuum assisted-resin transfer molding (VA-RTM).

Covestro supplied its Dispercoll adhesive as a binder for the fiber fleece mats, as well as the 3D-printed backrest cushion. According to Herrmann, Dispercoll’s mechanical properties provide good abrasion resistance, which is important because surface contact between the cushion and frame can subject the fleece to wear over time.

“If you have a single fiber roving, when you put that into a textile, you get micro-movements between the hard CFRP parts and the fleece mats. The seating frame components can rub against the textile and destroy it,” explains Herrmann.

Traditional seats typically have a larger surface area supporting the cushioning, and do not have this problem.With xFK in 3D, however, there is a smaller contact surface area due to the frame structure.

“When xFK in 3D structures push against the fleece fabric, you must have a specific and durable binder; this is what Dispercoll provides in this context,” adds Herrmann.

Covestro also supplied what is said to be the world’s first 3D-printed cushion. While conventional and tooling intensive foam is typically used in seat backrests, the use of the 3D-printed seat backrest cushions, which are made from TPU (thermoplastic polyurethane), further increases the flexibility and adaptability of the ULBS seat with regard to its aesthetics, functional integration options and comfort.

A seat for the future

The ULBS project accomplishes several goals. The resulting concept, while not yet on the market, has the potential to serve numerous niche markets such as hypercars, air-taxis, ultra-lightweight vehicles, micromobility, helicopters, multicopters and aviation. While admittedly more expensive than production car seats, the ULBS demonstrates several technologies that minimize waste, thereby lowering material costs. In comparison to other carbon fiber technologies, xFK in 3D yields a very low amount of waste. In fact, the entire project is aimed at using minimal resources and only the necessary minimum of the material. The ULBS also offers the possibility of using renewable and sustainable resources such as natural fibers in the frame structure, cushions and textiles.

But more importantly, the project demonstrates how companies can minimize time to market by working together through short and agile coordination procedures. It’s also a good example of using design thinking to successfully take a product from idea to hardware prototype by focusing on the functional requirements and looking ahead to future applications and sustainability goals.

RELATED CONTENT

  • Ceramic-matrix composites heat up

    Lightweight, hard and stable at high temperatures, CMCs are emerging from two decades of study and development into commercial applications.

  • The making of carbon fiber

    A look at the process by which precursor becomes carbon fiber through a careful (and mostly proprietary) manipulation of temperature and tension.

  • Boeing 787 Update

    Approaching rollout and first flight, the 787 relies on innovations in composite materials and processes to hit its targets

Source Link

flexible filament

How To Succeed When Printing With Versatile Filament

3D printing was a hot topic in the 21st century. People have been working with 3D printers and trying to create a lot of objects. Flexible filaments are a widely used material and can be used to create any complex elastic design. Since this is 3D printing, let’s discuss 3D printing with flexible filaments.

If you are new to this field you can face many challenges and it may not be easy. However, printing with flexible filament is easier than it looks. This concept is widely used from TPE to Soft PLA. When we talk about design, these filaments are actually printable rubber and because of this, it can create complex elastic designs that might otherwise be impossible. These filaments are available in different variants. There are different colors, hardnesses, and chemical makeup that you can use to give your product different properties.

What is flexible 3D printing?

Most people want to know what exactly is flexible 3D printing. If you’ve printed with PLA filament, you know that it is tough and brittle. The products from which the models are made are mainly made of rubber, which can be heated and given the required shape as needed. This doesn’t work with 3D printers. You have to combine different materials like rubber polymers with plastic polymers to get a thermoplastic elastomer (TPE). You can also create thermoplastic polyurethane (TPU), thermoplastic polyester copolyamide elastomer (PCTPE) or soft PLA. These materials are used in many industries to make various items. Most of these items are used in a vehicle. If you print with resin filament, you can also make edible products. Rules of 3D printing

There are certain rules that need to be followed when using the flexible filament for printing.

  1. No pull back when printing

The first rule is that there should be no withdrawal. It is better to turn off the retraction while printing. Constantly extruding and retracting can cause problems. The printer has to fill the hotend with more filament and can cause defects in the final product.

  1. Keep the filament dry

It is imperative that you dry the flexible filament every time. This can be accomplished by placing the filament in an oven at 200 ° F for about 6 hours, then turning the oven off and cooling to room temperature. Most filaments will break if you use them wet. The water droplets can also leave voids in the final print that may not look good. Keeping the filament dry is good for the end product. The resins come in many forms, so they can easily be used to create 3D printer objects. A high quality resin is mostly used for printing with resin filaments. It helps create a naturally smooth surface.

  1. Slow down

You can print very quickly with certain filaments such as PLA or ABS because they are hard material and easy to move around on the product. This does not apply to flexible printing. If you slow down the whole process, there is less chance of error. You can start 30mm / s as the top speed at startup. Certain printers may require you to work faster or slower, but the 30mm / s works best.

There are certain myths when it comes to using flexible filaments for printing. Many believe that you can’t use this on Bowden printers and it won’t even print well. With recent advances, the biggest improvement has been to limit the filament path. This will ensure that the filament won’t come out of the bond and stay in place.

The first layer

It’s always important to get the first layer right every time you print. To do this, you need to make sure that the printing surface is level. In addition, the extruder must be at the correct height from the bed and the nozzle must be the correct distance from the bed. Last but not least, the base should be made of good material and adhere to the flexible filament. Make sure the temperature is correct too and temperatures that are too high and too low are bad for the end product.

Conclusion

The steadily growing interest in 3D printing and the invention of new methods of creating a model have made this a very important work. Soon the way we make and handle objects and even food would change.

Source Link

Polymaker launches PolyBox™ to protect 3D printer filament

Polymaker launches PolyBox™ to guard 3D printer filament

As the choice of materials becomes more exotic for the 3D printing industry, so does the way we store and print our materials. The biggest problem with materials is the moisture content that is absorbed into the filament from the environment. In humid habitats, hygroscopic materials like PVA can spoil in a few hours, the Polybox ™ shields the filament from the humid air, creating a dry environment to store your materials.

The moisture content in filaments can cause a variety of problems from inconsistent extrusion to poor surface quality and ultimately to yield a printed part with poor mechanical properties due to poor layer adhesion. In environments with> 20% humidity, water molecules will quickly absorb into the filament-forming polar bonds with the polymer chain. When the filament reaches the hot end, the moisture will expand rapidly, boil and tear the filament apart. This causes bubbles in between layers, inconsistent extrusion due to material expansion, and poor surface quality due to the fluctuating flow rate. Materials like PVA, nylon and PolySmooth ™ are particularly susceptible to moisture absorption, but ABS, polycarbonate and PLA are also hygroscopic.

The Polybox ™ is a dry storage box that allows you to print and store your threads in their optimal environment ensuring the best print quality from the beginning of the spool to the end. The PolyBox ™ comes with a 150 cm long filament guide tube to ensure that the filament is protected from the spool to the hot end. There are six filament exit holes in a reversible housing. Whether your printer is front, rear, or side-fed, there is an orientation that will suit your setup.

The Polybox ™ regulates moisture with large desiccant bags in the base of the device. This cheap, simple solution provides a dry environment for filament storage and printing. The desiccants can be dried and reused once they have reached their maximum water absorption. With four bearing-wrapped steel bars, two spools can rotate independently for double extrusion, or the PolyBox ™ can hold a 3kg spool for long prints or industrial use. The humidity in the box can be monitored with a high-precision thermo-hygrometer on the front of the device.

The PolyBox ™ is a simple solution to the growing problem of the proper storage of 3D printing filaments. With Polymaker Industrial offering 4 grades of nylon next year and Polymaker launching its own nylon next year, the need to properly store your filaments is more important today than ever. Why should we be held back by moisture absorption when innovative materials open new doors in the 3D printing industry?

PolyBox ™ will be available on the 25thth from September worldwide, MSRP $ 69.99, € 69.99

Source Link

many-filaments.jpg

3D printing palms on: Some fascinating Jedi-level PLA filament secrets and techniques

Eine Auswahl an Filamenten.

Die meisten Desktop-3D-Drucker verwenden den sogenannten FDM-Druck (Fused Deposition Modeling). Ein anderer Begriff ist FFF (oder Fused Filament Fabrication). Die Idee hinter beiden ist, dass ein 3D-Druck aufgebaut wird, indem Schichten aus klebrigem Kunststoff übereinander geschichtet werden.

Wenn jede Schicht extrudiert wird, verbindet sie sich mit der vorherigen Schicht, und schließlich erhalten Sie einen Dalek oder Millennium Falcon aus Kunststoff, den Sie auf Ihre Kommode legen können.

FDM-Drucker funktionieren sehr ähnlich wie Tintenstrahldrucker. Ein Kopf bewegt sich um eine Druckfläche und legt Material ab. Ein Unterschied zum 3D-Druck besteht darin, dass anstelle von Tinte geschmolzener Kunststoff abgeschieden wird. Der andere große Unterschied ist, dass es eine Z-Achse gibt. Der Drucker fährt hoch sowie von Seite zu Seite und von vorne nach hinten. Infolgedessen kann jede Kunststoffschicht auf jede zusätzliche Kunststoffschicht gelegt werden.

Hier sind die guten Nachrichten. Mit der Ausnahme, dass Sie wissen, dass Sie Filament für einen 3D-Drucker kaufen müssen, wie Sie Tinte für einen 2D-Drucker kaufen müssten, müssen Sie nicht viel über die Wissenschaft des Filaments wissen.

Das 3D-Druckgeschäft ist so weit gegangen, dass Sie vierhundert Dollar für einen kleinen MOD-t-Drucker einsparen und Objekte glücklich produzieren können, ohne etwas über Filamente, Aufschnittmaschinen, Extrusionstemperaturen, Kunststofftypen, Betttemperaturen, Extrusionsraten usw. zu wissen. oder Glasübergangstemperaturen.

Ich meine es ernst damit, wie wenig Sie wissen müssen. Ich bin jetzt seit November glücklich im 3D-Druck und erst diese Woche habe ich angefangen, mich mit dem Arcana zu beschäftigen. Das lag daran, dass ich neugierig wurde, warum mit dem billigen Filament, das ich gekauft hatte, etwas passierte, und ich hatte Zugang zu einem Guru des technischen Supports der Jedi-Meister, der viele meiner Fragen beantwortete.

Ich werde den Problemlösungsprozess in der Reihenfolge durchlaufen, in der ich damit gearbeitet habe. Sie werden einige faszinierende Dinge darüber lernen, wie Filamente hergestellt werden, die sich auf Ihre Auswahl auswirken können, wenn Sie Ihre 3D-Drucker verwenden.

Das Problem

Sie wissen, wie Tintenstrahldruckerhersteller immer vorgehen, wenn Sie ihre Tintenmarke kaufen? Es soll besser funktionieren, kostet aber auch viel mehr. Die gleiche Idee gilt für den 3D-Druck, da der Kunststoff, der von verschiedenen Anbietern hergestellt wird, möglicherweise sehr unterschiedliche Eigenschaften aufweist.

Erstens gibt es viele verschiedene Arten von Kunststoffen, die für Filamente verwendet werden. Ich habe bereits über PLA und ABS gesprochen. Es gibt auch HIPS, PETG, Nylon und viele andere Typen. Heutzutage ist PLA am häufigsten, da es im Allgemeinen einfacher zu verwenden ist als ABS (obwohl es etwas spröder ist) und bei weitem nicht so giftig ist.

Als die Leute von Aleph Objects mir ihren LulzBot Mini schickten, schickten sie mir eine Vielzahl von Filamenten, aber sie schickten mir nicht die grundlegendste PLA. Das liegt daran, dass sie all die coolen Filamente zeigen wollten, mit denen sie umgehen konnten. Ich möchte auf jeden Fall alles über sie lernen, aber ich lerne immer noch über die Feinheiten selbst der grundlegenden PLA.

Auf jeden Fall habe ich bei Amazon eine billige 21-Dollar-Rolle Hatchbox PLA-Filament gekauft. Es ist ungefähr die Hälfte des Preises im Vergleich zu einigen der bekannten Marken, aber ich wollte sehen, was mit den billigen Sachen gemacht werden kann. Wie Sie im Bild unten sehen können, wurde es erstaunlich gut gedruckt.

lulzbot mansion.jpg

Dies wurde bis auf die ersten Schichten gut gedruckt.

Nach einigen Drucken bemerkte ich jedoch ein seltsames kleines Problem. Am Ende jedes Drucks wurden die ersten zehn Zeilen nicht reibungslos gedruckt. Wenn man sie genauer betrachtet, anstatt glatte Schichten, sah es eher aus wie eine gebrochene Graham-Cracker-Textur. Sie können das an den Beispielen sehen, die im Bild unten gezeigt werden.

edge-texture.jpg

Beachten Sie die Randtextur, auf die der Pfeil zeigt. Das ist nicht richtig.

Dieses Verhalten war anders als das, was ich auf dem MakerBot gesehen hatte. Obwohl sowohl der MakerBot- als auch der LulzBot-Drucker PLA verwendeten, gab es einige wesentliche Unterschiede.

Der MakerBot ist ausschließlich für die Verwendung mit MakerBot-Filamenten mit 1,75 mm Durchmesser ausgelegt. Der LulzBot ist so konzipiert, dass er so ziemlich jedes Filamentmaterial aufnehmen kann, das Sie ihm geben, solange es sich um das dickere 3-mm-Filament handelt. Der MakerBot verfügt über ein Bett mit Raumtemperatur, das nicht beheizt ist. Der LulzBot verfügt über ein beheiztes Bett, sodass Sie auch die Betttemperatur steuern können.

Da Sie das LulzBot-Bett erwärmen können, wird die Haftung durch die Wärme des Bettes unterstützt. Im Fall des MakerBot ist es besser, ein Floß (eine Stützstruktur unter dem Objekt) zu verwenden, um die Haftung zu verbessern.

Da ich noch nie zuvor auf einer beheizten Oberfläche gedruckt hatte, wusste ich nicht, ob der Graham-Cracker-Effekt auf die ersten Schichten auf ein beheiztes Bett zurückzuführen war oder auf ein Problem hinsichtlich des Druckvorgangs des Druckers.

Ich habe mich an den technischen Support von LulzBot gewandt und Hilfe von jemandem erhalten, von dem ich wünschte, ich könnte Sie vorstellen. Leider ist dieser Typ, wie viele Ingenieure, mit denen ich über die Jahre zusammengearbeitet habe, ein bisschen schüchtern. Anstatt dir seinen Namen zu geben, werde ich ihn einfach Obi-Wan nennen. Obi-Wan hat mir viel beigebracht.

Z-Sonden-Offset

Aus praktischer Sicht haben wir uns auf zwei Punkte konzentriert: die Temperatur, auf die das Bett beim Drucken eingestellt wurde, und den Versatz der Z-Sonde. Lassen Sie uns zuerst den Z-Sonden-Offset durchführen.

Ich weiß. Es klingt wie etwas, das Fox Mulder untersuchen würde. Der Versatz der Z-Sonde gibt jedoch im Wesentlichen an, wie weit die Düse vom Bett entfernt ist, wenn sie mit dem Extrudieren des Filaments beginnt. Mit G-Code (dem Maschinencode von 3D-Druckern) können Sie den Z-Code-Offset um einen kleinen Betrag nach oben oder unten anpassen. So hat es Obi-Wan beschrieben:

Dies wird am häufigsten dadurch verursacht, dass der Z-Versatz etwas zu nahe am Bett liegt. Wenn nicht genügend Platz für diese erste Schicht vorhanden ist, quetscht sich das Filament zur Seite und bildet auf ebenen Flächen raue Linien. Über einige Schichten hinweg wird sich dies im Wesentlichen von selbst auswirken, da immer weniger Filamente an den Seiten gequetscht werden.

Um dies zu ändern, geben Sie tatsächlich eine Zeile G-Code ein. Er ließ mich zuerst M851 eingeben, das den aktuellen Z-Sonden-Offset zurückgibt. In meinem Fall war es -1,43. Sie erhöhen die Zahl, je weiter die Düse vom Bett entfernt sein soll. Also habe ich meine um einen Zehntel Millimeter nach oben bewegt. Der Befehl lautet:

M851 Z-1.33

Dadurch wird die Änderung tatsächlich in die Firmware des Druckers geschrieben, sodass sie nach der Änderung für alle Filamente aller Art gilt. Obi-Wan gab eine Warnung zum Testen dieses Wertes weiter:

Achten Sie beim ersten Testen dieses neuen Versatzes genau auf diese erste Schicht. Wenn sich herausstellt, dass die Düse in das Bett gegraben wird, schalten Sie den Drucker aus und stellen Sie den Versatz ein, bis dies nicht mehr der Fall ist.

Daran zu basteln hat Spaß gemacht. Ich habe einen Würfel getestet und beim ersten Mal habe ich einen kompletten Haufen fadenförmiger Unordnung bekommen.

stringy-mess.jpg

Drucken Sie nicht in der Luft. Wenn Sie dies tun, werden Sie ein fadenförmiges Durcheinander bekommen.

Es stellte sich heraus, dass ich “M851 Z1.33” eingegeben habe, wodurch der Kopf weit über die Bauplatte angehoben wurde und nichts klebte. Ein E-Mail-Gespräch mit Obi-Wan korrigierte Folgendes:

Durch diese große Änderung wird Ihre anfängliche Schichthöhe von 0,425 mm in der Luft gedruckt. Sie sollten dies in -1,33 ändern, wodurch sich der Abstand geringfügig vergrößert, der jedoch nicht dramatisch genug ist, um einen Druck in der Luft zu verursachen.

Er sagte mir auch, ich solle einen M500-Befehl verwenden, um die Änderung in die Firmware zu schreiben. Andernfalls würde die Änderung nicht zwischen den Einschaltzyklen des Druckers bleiben.

gcode-settings.jpg

Dies wurde über die Steuerschnittstelle in einem 3D-Druckprogramm namens Cura durchgeführt.

Obi-Wan erzählte mir auch, warum Drucker möglicherweise mit einem anderen Z-Sonden-Offset geliefert werden:

Wenn wir die Drucker im Haus kalibrieren, möchten wir für diese erste Schicht ein wenig mehr Quetschen behalten. Es hilft sicherzustellen, dass die Drucke gut am Bett haften. Dies führt dazu, dass ein wenig des Elefantenfußes auf den unteren Schichten liegt, verhindert jedoch, dass 70 Stunden lang etwas von der Platte in einen 80-Stunden-Druck springt.

Ich habe solche Drucke gehabt. Es macht keinen Spaß, wenn Sie fast fertig sind und sie scheitern.

Mehr über Filamente

Meine Theorie hat sich als richtig erwiesen. Der Graham-Cracker-Effekt war darauf zurückzuführen, dass der Kunststoff beim Extrudieren zu heiß war. Bei einer zu heißen Betttemperatur kühlte der Kunststoff nicht im richtigen Tempo ab, um glatte Schichten zu erzeugen.

Diese Erkundung hat mir geholfen, viel über Filamente zu verstehen. Wenn Sie sich erinnern, habe ich letzte Woche erwähnt, dass in den USA hergestelltes PLA im Allgemeinen aus Maisstärke besteht. In Asien hergestelltes PLA wird häufig aus Tapiokawurzeln hergestellt. Wie Sie sich vorstellen können, haben diese Substanzen eine ganz andere chemische Zusammensetzung.

Die meisten 3D-Drucker, die mehr als eine Filamentart unterstützen, können ein Filamentprofil festlegen, das viele Faktoren wie Betttemperatur, Extrusionstemperatur, Extrusionsgeschwindigkeit und mehr umfassen kann. Viele der beliebtesten Filamente sind mit Profilen versehen.

Weil ich dies mit einem Markenfilament versucht habe, haben Obi-Wan und ich eine wirklich interessante Diskussion über Filamente geführt.

Unterschiedliche Hersteller haben unterschiedliche Formeln und daher unterschiedliche thermische Eigenschaften. Derzeit gibt es keine Regelung für das, was als “PLA” -Druckmaterial definiert ist. Eine Formulierung mit 1% PLA und eine Formulierung mit 99% PLA können beide als solche beansprucht werden, weisen jedoch stark unterschiedliche Wärme- / Druckeigenschaften auf.

Ich habe zum Beispiel etwas über Tg gelernt. Tg steht für den Glasübergangspunkt. Unterschiedliche Filamente können unterschiedliche Glasübergangspunkte haben. Einfach ausgedrückt ist ein Glasübergangspunkt der Punkt, an dem ein Polymer von starr und spröde zu flexibel wird. Beachten Sie, dass es nicht die Schmelztemperatur ist. Stattdessen ist es die Temperatur, bei der die Moleküle genug angeregt werden, um ihre Bindungen zu lösen und ein Material weniger spröde werden zu lassen.

Da unterschiedliche Filamente unterschiedliche Tg-Punkte haben können, müssen sie sowohl im Extruder als auch auf dem Bett auf unterschiedliche Temperaturen eingestellt werden.

Ich fragte auch nach Filamentfarben. Ich hatte empirisch festgestellt, dass Schwarz schwieriger zu drucken schien als andere Farben. Folgendes hat mir Obi-Wan gesagt:

Wenn Sie nach ästhetischer Qualität suchen, halten Sie sich von Weiß fern. Es hebt Schatten sehr leicht hervor und macht die Ebenenlinien beim Fotografieren sichtbar. Ich mag die hellen Blau- und Grüntöne, da sie die besten Fotos zu machen scheinen. Je nachdem, wer das Filament herstellt, kann Schwarz sehr problematisch sein. Einige Filamenthersteller verwenden “Mahlgut”, wo sie andere Filamentfarben zermahlen und erneut extrudieren. Schwarz kann alle anderen Stümpfe verdecken und spart so Kosten. Leider bricht das Filament jedes Mal, wenn es extrudiert wird, physikalisch etwas zusammen. Dies ändert seine thermischen Eigenschaften und wie es ideal gedruckt wird. (Ganz zu schweigen von Inkonsistenzen zwischen Chargen.)

Farbe, von der wir denken können, dass sie kein Gewicht oder keine Konsistenz hat, hat tatsächlich Substanz. Meine Frau sagte mir oft, dass identische Garne, die mit verschiedenen Farben gefärbt sind, steifer oder glatter sind. Ein Video, das ich am Ende dieses Artikels eingebettet habe (ich liebe das Internet!), Zeigt, wie dick eine Sharpie-Marke tatsächlich ist.

Betttemperatur

Als nächstes haben wir zwei neue Tests ausprobiert: Einstellen der Betttemperaturen und Verwenden eines Filaments, das mit dem bereits getesteten Profil geliefert wurde. Zuerst habe ich einen kleinen Block mit einer Betttemperatur von 60 ° C, 40 ° C und 20 ° C getestet. Wie Sie im folgenden Bild sehen können, hat die Betttemperatur von 20 Grad am besten funktioniert.

Bett-Temperatur-Vergleich.jpg

Schauen Sie sich die Schichten, auf die die Pfeile zeigen, genau an, um zu sehen, wie die unterschiedlichen Betttemperaturen (20, 40 und 60 Grad) die Schmelzeigenschaften des Kunststoffs verändert haben.

Schließlich kaufte ich eine Rolle Verbatim PLA. Dies war doppelt so teuer wie das Hatchbox-Zeug, wurde aber von Obi-Wan empfohlen und hatte ein Profil. Das Drucken ohne Änderungen oder Änderungen der Betttemperatur führte zu einem ziemlich sauberen Druck:

wörtlich-rot.jpg

Die ersten Ebenen sehen mit dem Standardprofil gut aus.

Hier bitteschön. Nichts davon ist wirklich notwendig, um zu wissen, ob Sie nur einige 3D-Drucke erstellen möchten. Aber wenn Sie neugierig sind auf die Materialien, die in Ihre 3D-Drucke einfließen, und wie Sie darüber nachdenken können, hoffe ich, dass Sie diese Diskussion genauso faszinierend finden wie ich.

Wenn Sie mit Ihrem 3D-Drucker etwas Cooles machen, posten Sie dies in der folgenden Diskussion oder twittern Sie mir ein Bild davon an das am Ende dieses Artikels aufgeführte Konto. Ich werde die coolsten Abzüge, die ich gesendet habe, retweeten.

Zum Schluss noch ein großes Dankeschön an den Mann, den ich Obi-Wan genannt habe. Ich habe viel gelernt und ich schätze die Zeit, die Sie gebraucht haben, und die Unterstützung von Aleph Objects bei der Erforschung des 3D-Drucks über verschiedene Filamente hinweg sehr.

Sie können meine täglichen Projektaktualisierungen in den sozialen Medien verfolgen. Folgen Sie mir auf Twitter unter @DavidGewirtz, auf Facebook unter Facebook.com/DavidGewirtz, auf Instagram unter Instagram.com/DavidGewirtz und auf YouTube unter YouTube.com/DavidGewirtzTV.



Source Link